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Grassmann structures and integrable systems
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Abstract

We consider some natural connections which arise between right-flat(p, q) paraconformal struc-
tures and integrable systems. We find that such systems may be formulated in Lax form with
a “Lax p-tuple” of linear differential operators, depending a spectral parameter which lives in
(q − 1)-dimensional complex projective space. Generally, the differential operators contain partial
derivatives with respect to the spectral parameter. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has long been known that in four-dimensional Riemannian geometry there is a connec-
tion between conformal structures with anti-self-dual Weyl tensor, and three-dimensional
complex manifolds:

Theorem 1.1 (Atiyah, Hitchin and Singer [1]).If a manifold M admits a conformal structure
with W+ = 0, then the projective spin-bundle P(V+) is a complex 3-manifold. Conversely,
given a complex 3-manifold Z with a real structure (i.e. anti-holomorphic involution) σ
and a 4 parameter family of embedded rational curves with normal bundle N ∼= H ⊕ H ,
on which σ acts as the anti-podal map, then the space of real rational curves admits an
anti-self-dual conformal structure. All anti-self-dual conformal structures arise in this way.

Moreover, if one considers anti-self-dual Yang–Mills fields on an anti-self-dual back-
ground, then solutions may be constructed in terms of holomorphic vector bundles on this
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complex 3-manifold. The existence of such a complex 3-manifold is looked on as being
central to the notion of integrability of the anti-self-duality equations [9,16,17].

If one tries to generalise notions of anti-self-duality to higher dimensional Riemannian
manifolds, there are several (inequivalent) paths one may choose to follow.

A common choice is to investigate Riemannian manifolds in higher dimension with re-
duced holonomy group [15], and gauge fields related to these structures [4]. In the case of
(irreducible, non-symmetric) Riemannian manifolds, one may then invoke Berger’s clas-
sification of the possible holonomy groups of the Levi–Civita connection. Apart from the
generic case of SO(n) holonomy group, the holonomy groups allowed by Berger’s clas-
sification correspond to Kähler, quaternionic-Kähler, Ricci-flat Kähler and hyper-Kähler
manifolds, along with two exceptional possibilities of Ricci-flat metrics with holonomy
groupG2 and Spin7 in dimensions 7 and 8. This may not be the most natural approach if
ones interest is in integrable systems, however, since, of these possibilities, the only sys-
tems which appear to be integrable are those which govern Kähler, quaternionic-Kähler
and hyper-Kähler structures. The equations for Ricci-flat Kähler metrics are not integrable
in dimensions greater than 4. Little is known concerning the integrability of theG2 and
Spin7 holonomy equations, although they contain as special cases the (non-integrable) equa-
tions for six-dimensional and eight-dimensional Ricci-flat Kähler structures, respectively.
Therefore, it is extremely unlikely that these two systems are integrable.

An alternative path is not to start with the geometrical condition of anti-self-duality of
the four-dimensional metric, but to simply consider systems in higher dimensions where
there is a suitable generalisation of the complex 3-manifold which appears in four dimen-
sions. Generically, we will denote such a complex manifold byZ, and the idea is that
one reconstructs the geometrical manifold, denotedM, as a parameter space of particular
sub-manifolds ofZ. Natural geometrical structures then arise on the manifoldM as a result
of the integrability of the complex structure onZ. Any additional holomorphic structures
that exist onZ then lead to more specialised geometrical structures onM. The complex
manifoldZ will be referred to as a twistor space, and the essence of the work of Ward and
others [9,16,17] is that it is the existence of a twistor construction for a problem which
should be interpreted as a sign of its integrability. Substantial evidence for this claim comes
from the fact that many standard integrable systems in two and three dimensions may be
constructed as symmetry reductions of the equations for anti-self-dual Yang–Mills fields
and anti-self-dual conformal structures in four dimensions [9,17]. In this approach it is the
existence of the complex manifoldZ that is central, the equations on the space–time then
being simply a manifestation of the complex structure onZ.

We aim here to study (local) properties of structures for which there is a complex manifold
construction, the right-flat Grassmann structures, and to see what new features of integrable
systems these structures suggest. In particular, we begin by reviewing, in explicitly local
terms, the construction implicit in Theorem 1.1. What we find is that even in this simplest
situation, there are features of the equations which arise which are unusual from the point of
view of integrable systems. In the generic case of an anti-self-dual manifold, the spin-bundle
does not fibre overP1, the complex projective line. In integrable systems terms this means
that the operators in our Lax pair contain partial derivatives with respect to the spectral pa-
rameter. Therefore the spectral parameter itself is very much part of the geometrical problem,
a property which is unusual (but not unknown) in conventional integrable systems theory.
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We then study, in a similar fashion(p, q) right-flat Grassmann structures in dimension
n = pq. In this case, we find that as opposed to a Lax pair of operators depending on a spec-
tral parameterλ ∈ P1, the right-flat condition on a Grassmann structure is determined by a
Laxp-tuple of differential operators depending on a spectral parameter taking values in the
higher-dimensional projective spacePq−1. As in the case of anti-self-dual structures in four
dimensions, these differential operators generally contain derivatives in the spectral param-
eter, corresponding to the fact that the complex manifoldZ does not fibre holomorphically
overPq−1.

The moral of our story is that if one takes the ideas of Ward and others seriously that it is
the connection with complex manifold theory which is central to integrable system theory,
then one must substantially generalise what one considers to be an integrable system.

2. Anti-self-dual conformal structures

We begin by reviewing, in local terms, the construction implicit in Theorem 1.1. Consider
an oriented Riemannian four-manifoldM. We may then define a canonical almost complex
structure on the projective spin-bundle. First, we use the Levi–Civita connection to split the
tangent bundle ofP(V+) as the direct sum of a vertical part along the fibres,V (P(V+)),
and the horizontal part,H(P(V+)), which is the pull-back of the tangent bundle ofM,
p∗TM. The vertical fibres are complex projective lines, and so inherit a natural almost
complex structure. In the horizontal direction, a non-zero spinorπ ∈ (V+)x identifiesTxM
by Clifford multiplication with the two-dimensional complex vector space(V−)x . At the
points ofP(V+) corresponding toπ , we put this almost complex structure onHx(P(V+)).
It follows that this almost complex structure is integrable if and only if the Weyl tensor of
the conformal structure is anti-self-dual [1].

To cast this in more explicit terms, fix a Riemannian metric,g, in the conformal structure.
If we complexify the tangent space, and extend the metric by complex linearity to a complex
metric (again denotedg) on TM ⊗ C, then locally, we may introduce a null basis{εi |i =
1, . . . ,4} for T ∗M ⊗ C in which the metric may be written as

g = ε1 ⊗ ε2 + ε2 ⊗ ε1 + ε3 ⊗ ε4 + ε4 ⊗ ε3. (2.1)

We can then define the Levi–Civita connection,�, of the tetrad by the equation

dεi +
4∑

j=1

�i
j ∧ εj = 0, i = 1, . . . ,4.

If we adopt an affine complex coordinate,λ, on the fibre(P(V+))x ∼= P1, then we define an
almost complex structure onP(V+) by defining the distributionΛ ⊂ T ∗(P(V+)) spanned
by the 1-forms

σ1 = ε3 + λε1, σ2 = ε2 − λε4, σ3 = dλ+ Γ14 + λ(Γ12 − Γ34)+ λ2Γ23.

This almost complex structure onP(V+) is integrable if and only if the distributionΛ is
involutive, i.e. dΛ ⊂ Λ1 ∧ Λ. It is straightforward to show that this is the case if and
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only if the Weyl tensor of the metricg defined above is anti-self-dual. It also follows
straightforwardly that this construction is unaffected by conformal changes of metric, and
so depends only on the conformal equivalence class of the metric [1].

The connection with integrable systems comes from taking a dual formulation of this
result [9]. The anti-holomorphic tangent space ofP(V+) is spanned by the vector fields

v1 = 1

1 + λλ̄

[
e4 + A4

∂

∂λ
+ Ā4

∂

∂λ̄
+ λ

(
e2 + A2

∂

∂λ
+ Ā2

∂

∂λ̄

)]
,

v2 = 1

1 + λλ̄

[
e1 + A1

∂

∂λ
+ Ā1

∂

∂λ̄
− λ

(
e3 + A3

∂

∂λ
+ Ā3

∂

∂λ̄

)]
,

v3 = ∂

∂λ̄
,

whereei are vector fields onM dual to the 1-formsεi

〈εi , ej 〉 = δij ,

and

A = −Γ14 − λ(Γ12 − Γ34)− λ2Γ23, Ā = −Γ23 + λ(Γ12 − Γ34)− λ2Γ14.

The complex structure defined by these vectors is integrable if they are closed under Lie
brackets. We now note that the complex structure defined by these vector fields is the same
as defined by the following basis:

L1 = D4 + λD2, L2 = D1 − λD3, v = ∂

∂λ̄
,

where we have defined the vector fields

Di = ei + Ai

∂

∂λ
. (2.2)

The only non-trivial part of the integrability of the complex structure we have defined is
that the Lie bracket ofL1 andL2 must lie inT (0,1). Therefore for integrability we require
the existence of functionsα(x : λ), β(x : λ) with the property that

[D4 + λD2,D1 − λD3] = α(D4 + λD2)+ β(D1 − λD3). (2.3)

A power counting argument implies that the functionsα andβ are quadratic polynomials
in the variableλ. If this condition is satisfied, then the projective spin-bundle is a complex
3-manifold, and so the conformal structure must be anti-self-dual. Conversely, if the con-
formal structure is anti-self-dual, then the projective spin-bundle is a complex 3-manifold
and so, locally, we may choose bases where the above equations are satisfied. We therefore
have the following theorem.

Theorem 2.1. Given an anti-self-dual conformal structure and any representative metric
in the conformal class written in the form (2.1), then there exists a 1-form A, which is a
quadratic function of an arbitrary P1-valued parameter λ and two quadratic functions of
λ, α and β which obey Eq. (2.3),where the differential operators Di are as in Eq. (2.2).
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It is possible to decompose Eq. (2.3) into components in the tangent space of the manifold
M and components in the vertical direction∂/∂λ. The components inTM tell us that the
functionsα, β and the components of the formA correspond to parts of the Levi–Civita
connection. The parts of the Levi–Civita connection they define are precisely the parts
required to construct the self-dual part of the Weyl tensor,+W . The vertical component of
Eq. (2.3) then tell us that the five individual components of+W vanish identically, so the
Weyl tensor is anti-self-dual.

Eq. (2.3) tells us that the operatorsL1 andL2 constitute a Lax pair for the problem, and
therefore that the system is integrable. However, these operators contain derivatives with
respect to the spectral parameterλ, a feature which does not usually occur in standard inte-
grable systems theory. The origin of these derivative terms lies in the nature of the complex
manifoldP(V+). Eq. (2.3) are the integrability condition which ensures the existence of three
linearly independent solutions of the over-determined set of equations for a functionf (x : λ)

L1f = L2f = 0.

Solutions of these equations correspond to meromorphic functions onP(V+). The fact
thatλ itself is not a solution of these equation is a consequence of the fact that generally
P(V+) does not fibre overP1 (equivalentlyλ is not a meromorphic function onP(V+)).
In the case of hyper-Kähler or hyper-complex structures, where the spin-bundle does fibre
over P1, the λ derivatives are not present in the Lax pair [5,8]. In these cases, one can
reconstruct the transition functions of the bundle from the solutions of the above equations
[11].

Although, Eq. (2.3) describes the most general anti-self-dual conformal structures locally,
there are various special cases of these equations:

• Letting Ai = λφi , we recover the class of Hermitian anti-self-dual spaces, which are
conformal to scalar-flat̄∂-Kähler metrics [14].

• LettingA4+λA2 = A1−λA3 = 0 defines hyper-complex structures in four dimensions
[5].

• LettingAi = λφi , and assuming the vector fieldsei are divergence free with respect to
some volume element defines a scalar-flat Kähler metric up to a known conformal factor
(this is an extension of a result of Park [13]).

• LettingA4 + λA2 = A1 − λA3 = 0 and assuming the vector fieldsei are divergence
free with respect to some volume element defines a hyper-Kähler metric up to a known
conformal factor [8].

Similar results hold for complex anti-self-dual conformal structures and real conformal
structures of signature(−,−,+,+) with suitable generalisations and modifications of the
reality conditions.

3. Grassmann structures

Anti-self-dual conformal structures in four dimensions are a special case of a more
general type of structure, a right-flat Grassmann structure. Recall that for integersp, q ≥ 2,
a (p, q) Grassmann structure (or paraconformal structure in the terminology of Bailey and
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Eastwood [2]) consists of a complex manifoldM of complex dimensionn = pq and an
isomorphismα between the (holomorphic) tangent bundle ofM and the tensor product of
a rankp complex vector bundleU with a rankq vector bundleV

α : TM → U ⊗ V. (3.1)

Given such an isomorphism, we may introduce an isomorphism

ΛpU ∼= ΛqV (3.2)

between the highest exterior powers of these bundles.
Given connections, both denoted∇, on the bundlesU andV , we may define a unique

induced connection onTM, again denoted∇, by demanding that covariant differentiation
commutes with the isomorphismα. This affine connection naturally has torsionT defined
by

∇XY − ∇YX − [X,Y] = T(X,Y) ∀X,Y ∈ Γ (TM),

and curvature tensorR given by

([∇X,∇Y] − ∇[X,Y])V = R(X,Y)V ∀X,Y,V ∈ Γ (TM).

A scale for a Grassmann structure consists of a non-vanishing section,ε, of the bundle
ΛpU . The isomorphism (3.2) then implies the existence of a non-vanishing section,ε′, of
the bundleΛqV . It can be shown [2] that given the sectionsε andε′, there exist unique
connections onU andV (and therefore onTM) with the property that the torsion is trace-free,
and which annihilate the formsε andε′:

∇ε = ∇ε′ = 0.

We shall generally assume the existence of a scale, and work with the unique connections
which preserve it.

3.1. Algebraic decomposition of the torsion and curvature

If we consider the space of 2-forms onM, we have

∧2(T ∗M) ∼= ∧2(U∗ ⊗ V ∗) ∼= (∧2(U∗)⊗ S2(V ∗))⊕ (S2(U∗)⊗ ∧2(V ∗)),

where∧ andS denote skew-symmetric and symmetric powers of the relevant bundles,
respectively. Viewing the torsion as aTM valued 2-form onM, it decomposes into two
parts

T = T+ ⊕ T−,

where

T+ ∈ TM ⊗ (∧2(U∗)⊗ S2(V ∗)), T− ∈ TM ⊗ (S2(U∗)⊗ ∧2(V ∗)).

One can show that the trace-free parts of these parts of the torsion are independent of the
connection chosen on the vector bundlesU andV [2].
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There is a similar decomposition of the curvature tensorR. Given the direct product
nature ofTM, the curvature decomposes as a direct sum

R = R− ⊗ IdV + IdU ⊗ R+,

whereR− andR+ denote the curvatures of the connections∇ onU andV , respectively.
R+ may be viewed as a section ofΛ2(M)⊗ End(V ), and

Λ2(M)⊗ End(V )∼= ((Λ2U∗ ⊗ S2V ∗)⊕ (S2U∗ ⊗Λ2V ∗))⊗ (V ⊗ V ∗)
∼= (Λ2U∗ ⊗ (V ⊗ V ∗ ⊗ S2V ∗))⊕ (S2U∗ ⊗ (V ⊗ V ∗ ⊗Λ2V ∗)).

We now wish to consider the component ofR+ which is a section ofΛ2U∗ ⊗ (V ⊗ V ∗ ⊗
S2V ∗). If we completely symmetrise in theV components, then the trace-free part of the
remaining object will be referred to as the positive part of the Weyl tensor:

W+ ∈ Γ (trace-free part ofΛ2U∗ ⊗ (V ∗ ⊗ S3V ∗)).

Definition 3.1. A (p, q) Grassmann structure is right-flat if

T+ = 0, p > 2, W+ = 0, p = 2.

In the casep > 2, the vanishing of the torsion implies automatically thatW+ = 0,
whereas ifp = 2, the torsionT+ automatically vanishes, so the conditionW+ = 0 is
non-trivial [2]. A complex four-dimensional spin-manifold with a metric is a particular case
of a Grassmann manifold withp = q = 2 since, due to the structure of the complexified
rotation group, the complexified tangent bundle decomposes as a product of spin-bundles. In
this case,W+ may be identified with the self-dual part of the Weyl tensor of the conformal
structure [1]. In higher dimensions, withp = 2k andq = 2, special cases of right-flat
Grassmann structures include quaternion-Kähler and hyper-Kähler structures.

3.2. Twistor spaces

In the case of right-flat Grassmann structures, there is an associated complex manifold
Z of dimension(p + 1)(q − 1) which defines the structure. This manifold is constructed
as follows.

Consider a(p, q) Grassmann structure on a complex manifoldM as above, and assume
we have a local basis{εa|a = 1, . . . , n} for T ∗M. The isomorphism (3.1) implies we may
write this as{εAA′ |A = 1, . . . , p,A′ = 1, . . . , q}. Given anyπx ∈ Vx , we define the
annihilator

π⊥
x := {φx ∈ V ∗

x |〈φx, πx〉 = 0} ⊂ V ∗
x .

Let Λ ⊂ Ω(V ) be the distribution on the total space of the bundleV generated by the
1-forms

σA := φA′εAA′
, φ ∈ Γ (π⊥), (3.3)

σA
′
:= dπA′ + γ A

′
B ′πB ′

, (3.4)
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where�A′
B ′ denote the components of the connection onV . Complex conjugation gives

the complex conjugate distribution̄Λ. The sub-bundle ofT (V ) annihilated byΛ andΛ̄ is
spanned by the distributionsT andT̄ , whereT ⊂ T (V ) is spanned by the vector fields

vA := πA′
DAA′ , A = 1, . . . , p. (3.5)

The distributionΛ is closed (dΛ ⊂ Λ1 ∧ Λ) if and only if the distributionT is closed
under Lie brackets [T , T ] ⊂ T . It is straightforward to show from Eq. (3.5) that given
λ, χ ∈ Γ (U)

[vλ⊗π , vχ⊗π ] ≡ −T(λ⊗ π, χ ⊗ π)+ (R(λ⊗ π, χ ⊗ π)π)A
′ ∂

∂πA′ (modT ).

(3.6)

Therefore, if we wish the spaceT to be closed under Lie bracket, we require

〈φ,T(λ⊗ π, χ ⊗ π)〉 = 0 ∀φ ∈ Γ (π⊥) ∀λ, χ ∈ Γ (U), (3.7)

R(λ⊗ π, χ ⊗ π)π = 0 ∀λ, χ ∈ Γ (U). (3.8)

It is straightforward to show that if we fix the connections∇ onU andV so as to preserve
the scale, as mentioned in Section 3, then Eq. (3.8) implies that the Grassmann structure is
right-flat. Therefore, the distributionT is integrable (equivalentlyΛ is closed under exterior
differentiation) if and only if the Grassmann structure is right-flat.

We wish to consider the projective version of this construction. Treating the sectionπ

as homogeneous coordinates on the projective spacePq−1 ∼= P(V )p for eachp ∈ M, we
may introduce complex coordinates on the regionU1 = {π ∈ Cq |π1 �= 0}

λi = πi

π1
, i = 2, . . . , q.

The projections of the 1-forms above are

σA := εA1 + λ2εA2 + · · · + λqεAq, A = 1, . . . , p, (3.9)

σ i := dλi − Ai, i = 2, . . . , q, (3.10)

whereA is the projective version of the connection. We again denote the distribution inP(V )
defined by these 1-forms byΛ. Similarly, a distribution, again denotedT ⊂ T (P(V )), is
spanned by the projection of the vector fields (3.5)

vA := D1 + λ2D2 + · · · + λqDq, A = 1, . . . , p. (3.11)

The distribution spanned by these vector fields is integrable if and only if the Grassmann
structure onM is right-flat. The integrability of this distribution implies we have a set of
integrablep-dimensional planes inP(V ). Quotienting outP(V +) by this distribution1

therefore defines a quotient manifoldZ of dimension(p + 1)(q − 1), which we denote by

1 We are assuming that there is nothing globally pathological about the fibration, and that such a quotient operation
is justified.
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Z. We therefore have a mapp : Z → M, where the image of a point inZ is ap-dimensional
plane inP(V ) (in twistorial terminology, anα-plane). We can then define the distribution
p∗Λ ⊂ Λ(Z), which is involutive onZ. Since the dimension ofp∗Λequals the dimension of
Z, this distribution therefore determines an almost-complex structure onZ. Moreover, since
p∗Λ is involutive, this almost-complex structure is integrable. ThereforeZ is a complex
manifold of dimension(p + 1)(q − 1).

We now wish to invert this process and construct the manifoldM from a generic complex
manifoldZ. Given a pointp ∈ M, its image in the manifoldZ constructed above is a copy of
Pq−1 ⊂ Z, corresponding to the fibreP(V )p. We therefore wish to reconstruct the manifold
M as the parameter space of embeddedPq−1’s in Z. In order to carry out this construction,
we need to determine the normal bundle,N , of such an embedded sub-manifold.

In the notation of Eq. (3.4), the co-normal bundle,N∗, is spanned by the forms{φAεAA′ |φ ∈
π⊥ ⊂ V ∗, A = 1, . . . , p}. The co-normal bundle is therefore isomorphic top copies of the
bundleπ⊥ ⊂ V ∗, which annihilates the elementπ ∈ V . Givenx ∈ Pq−1, πx is an element
of the complex line inCq corresponding to the pointx, i.e. an element of theLx , whereL
denotes the tautological bundleL := H−1. We define the Universal Quotient bundle,Q,
so that the short sequence of vector bundles

0 → L → C
q → Q → 0

is exact, whereCq denotes the trivial rankq vector bundle overPq−1. The bundleπ⊥
is therefore isomorphic toQ∗, the dual of the quotient bundle. From the fact thatQ ∼=
H ⊗ TPq−1 [6], we deduce that

N∗ ∼=
p⊕
1
Ω1(1), (3.12)

where for a general manifoldX,Ωr denotes the bundle ofr-forms onX, and in the particular
case ofX = Pq−1, we define

Ωr(k) := Ωr(Pn)⊗Hk.

The dual of Eq. (3.12) provides the normal bundle ofPq−1 ⊂ Z

N ∼= (
p⊕
1
H−1)⊗ T (Pq−1). (3.13)

The Grassmann manifoldM is reconstructed as the set of embeddedPq−1’s in Z. Given
that we know the form of the normal bundle of an embeddedPq−1 corresponding to a
point x ∈ M, the number of deformations of the projective space follows from Kodaira’s
theorem: ifH 1(Pq−1, N) = 0, then the space of embeddedPq−1’s is a complex analytic
manifoldM, and the tangent space,TxM, is isomorphic toH 0(Pq−1, N). To calculate
these cohomology groups, we need some results concerning vector bundles over complex
projective spaces [12]. Serre duality states that for a holomorphic vector bundleE over a
(projective algebraic) complexn manifoldX, we have the isomorphism

Hq(X,E) ∼= (Hn−q(X,KX ⊗ E∗))∗,
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whereKX denotes the canonical bundle ofX. On such a manifold we also have the identi-
fication

(Ωr)∗ ∼= (Ωn)∗ ⊗Ωn−r .

For a complex projective space

KPn
∼= H−(n+1),

so in this case, we have

Hq(Pn,Ω
p(k)) ∼= (Hn−q(Pn,Ωn−p(−k))∗. (3.14)

Results of Bott [3] then tell us that

dimCH
q(Pn,Ω

p(k))

=




(
n+ k − p

k

)(
k − 1

p

)
, q = 0, 0 ≤ p ≤ n, k > p,

1, k = 0, 0 ≤ p = q ≤ n,(−k + p

−k
)(−k − 1

n− p

)
, q = n, 0 ≤ p ≤ n, k < p − n,

0, otherwise.

(3.15)

Applying these results, we first show thatH 1(Pq−1, N) = 0. From Eqs. (3.12) and (3.14),
we find that

H 1(Pq−1, N)∼= (Hq−2(Pq−1,K ⊗N∗))∗ ∼= (Hq−2(Pq−1, H
−q ⊗ p⊕

1
Ω1(1)))∗

∼=
p⊕
1
(Hq−2(Pq−1,Ω

1(1 − q)))∗ ∼=
p⊕
1
H 1(Pq−1,Ω

q−2(q − 1)) ∼= 0,

where the last equality follows from Eq. (3.15). ThereforeTxM is isomorphic to
H 0(Pq−1, N), where

H 0(Pq−1, N) ∼=
p⊕
1
H 0(Pq−1,Ω

q−2(q − 1)) ∼= Cpq,

by a similar argument to that given above. Therefore, given an embeddedPq−1 in a complex
manifoldZ of complex dimension(p+1)(q−1)with normal bundle as in Eq. (3.13), there
will exist ann = pq parameter family of such spaces. In the usual fashion, the integrability
of the complex structure onZ then implies thatM carries a right-flat Grassmann structure.

4. Integrable systems interpretation

The integrability of the distributionT defined by the vector fields (3.11) implies the
existence of functionsCAB

C with the property that

[vA, vB ] =
p∑

C=1

CAB
CvC, A,B = 1, . . . , p, (4.1)
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where, we recall, the vector fieldsvA are defined by

vA = D1 + λ2D2 + · · · + λqDq

with

Di = ei − Ai
j ∂

∂λj

with theAi
j quadratic polynomials in the spectral parametersλi . As such, thep vector fields

vA are sections of the tangent bundle ofP(V ), and correspond to differential operators which
depend on a set of(q−1) spectral parameters(λ2, . . . , λp). More properly, these parameters
correspond to a section of the line bundleH overPq−1, so our “spectral parameter” now
lives in Pq−1, unlike the usual case where we have a single spectral parameter inP1. A
power counting argument implies that the functionsCAB

C are quadratic polynomials in the
complex coordinatesλi , corresponding to sections of the bundleH 2.

As in the description of anti-self-dual conformal structures in four dimensions, the dif-
ferential operatorsvA contain partial derivatives with respect to these spectral parameters,
corresponding to the fact that the complex manifoldZ generally does not fibre holomor-
phically overPq−1.

The integrability of the distributionT is equivalent to the fact that the distributionΛ is
involutive. Integrability ofT implies the integrability of a distribution ofp-dimensional
planes inP(V ), and the existence of(p + 1)(q − 1) functionsf α such that the planes are
level sets of these functions. Equivalently, the distributionΛ is spanned by the differentials
{df α}. If we then quotient out by thep-dimensional distribution to construct the manifold
Z, then the functionsf α descend to holomorphic functions on the manifoldZ, and{df α}
generateΛ(1,0)(Z).

In terms of the Grassmann manifoldM, the1
2p(p−1) equations (4.1) are the integrability

condition for over-determined set of equations for a functionf (x : λ):

vAf = 0, A = 1, . . . , p. (4.2)

When Eq. (4.1) are satisfied, there exist(p + 1)(q − 1) linearly independent solutions of
these equations{fα}. The sub-space{fα = constant} ⊂ P(V ) are then theα planes of our
right-flat Grassmann structure. The functions{fα} then descend to holomorphic functions
on the quotient manifoldZ.

In integrable systems terminology, Eq. (4.2) is the associated linear problem for the
right-flat Grassmann structure. The compatibility condition Eq. (4.1) then ensures the in-
tegrability of the system. There are several non-standard elements of this construction,
however. Firstly, the analogue of the spectral parameter of standard integrable systems
theory in these equations is the set of affine coordinates{λi} on the(q − 1)-dimensional
complex projective spacePq−1.

Secondly, as opposed to the usual “Lax pair” formulation of integrable systems, we are
here forced to consider a “Laxp-tuple” of operators, i.e. the vector fieldsvA, which must
define an integrable distribution for the complex structure on the manifoldZ to be integrable.

As in the simpler case of anti-self-dual conformal structures in dimension 4 (and sim-
ilarly three-dimensional Einstein–Weyl structures), the differential operators we consider
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generally contain derivatives in the spectral projective space, corresponding to the fact that
the complex manifoldZ generally does not fibre over the complex projective spacePq−1.

4.1. Relations with Ward’s systems

Eq. (4.1) are, in some sense, an analogue of a construction due to Ward [16] for gauge
fields. Ward considered principalG-bundles with a connectionA ∈ Γ (Λ1⊗g). We consider
a fieldψ in a representation ofG, and consider the over-determined set of linear equations

DVαψ = 0, α = 1, . . . , p, (4.3)

where Dψ denotes the covariant derivative of the fieldψ with respect to the connectionA,
and theVα are vector fields. Moreover, the vector fieldsVα are taken to depend on a set
of complex parameters{λA|A = 1, . . . , q}, being a homogeneous polynomial of degree
N in these parameters. (The vector fields may therefore be identified with a section of
TM ⊗ HN , whereH denotes the Hopf bundle over the complex projective spacePq−1.)
For fixedλA, Eq. (4.3) are actuallyp dimg differential equations for dimg unknowns, and
so are over-determined ifp > 1. Since the system is over-determined, the existence of a
maximal family of solutions places a set of algebraic constraints on the curvatureF of the
connection

F(Vα,Vβ) = 0, α, β = 1, . . . , p. (4.4)

In the cases where the set of polynomial vector fieldsVα are suitably non-degenerate,
Eq. (4.4) can be completely solved by twistorial techniques [16].

The connection with Grassmann structures arises if we consider the case of linear poly-
nomials corresponding toN = 1. In this case, the non-degeneracy condition mentioned
above is analogous to the defining isomorphism (3.1). If we assume the underlying mani-
fold of the theory isRpq with coordinates{xa : a = 1, . . . , pq}, and that the connection is
constant (i.e. independent of thexa), then the integrability conditions above become a set
of algebraic equations on the connection

[A(Vα),A(Vα)] = 0, α, β = 1, . . . , p.

If we now take the connectionA to have values in the tangent bundle of an auxiliary manifold
M̄, then we may write

A(Vα) =
n∑

a=1

q∑
A=1

σaαAλ
Aea, (4.5)

where{ea|a = 1, . . . , n} denotes a basis of vector fields on the manifoldM̄. The integra-
bility conditions (4.4) then reduce to a set of relations on the commutators of the vector
fields{ea} on M̄

q∑
A,B=0

n∑
a,b=1

λAλBσaαAσ
b
βB [ea, eb] = 0, (4.6)
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where [, ] denotes the Lie bracket of vector fields. Imposing Eq. (4.6) for all values of the
parametersλA, we recover Eq. (4.1) withCAB

C = 0 in the case when the derivatives with
respect to the spectral parameter are not present.

If we allow derivatives with respect to the spectral parameter, then, in the terminology
of Park [13], our equations for general right-flat Grassmann structures may therefore be
considered as aPq−1-extension of Ward’s equations for a constant connection on flat space
with values in the tangent bundle of an auxiliaryn-manifoldM̄.

A special case of these equations without derivatives with respect to the spectral param-
eters is Joyce’s interpretation of the equations for hyper-complex conformal structures in
four dimensions [7], which in turn is a generalisation of the description of anti-self-dual
Ricci-flat structures due to Mason and Newman [8].

In terms of Ward’s classification of systems in dimensions up to 11, Grassmann structures
of typep = k, q = 2 correspond to Ward’s systemsAk, p = 2, q = m + 1 correspond
to hisCm, andp = q = 3 correspond to his systemD. The geometrical analogue of
Ward’s systems with higher order homogeneous polynomials correspond to twistor spaces
Z containing embeddedPq−1’s with more complicated normal bundle, sections of which
can be identified with a collection of sections of the bundleHn. Unfortunately, there does
not seem to be any simple geometrical interpretation of these systems in general.

5. Remarks and conclusions

If we wish to take seriously the idea that at the heart of classical integrable systems
is a connection with complex geometry, then implicit in the formulation of Grassmann
structures given in Eq. (4.1) are several generalisations of standard notions of integrability.

Firstly, the analogue of the spectral parameter of standard integrable systems theory in
these equations is the set of affine coordinates{λi} on the(q − 1)-dimensional complex
projective spacePq−1. In other words, the spectral parameter lives in a general complex
projective space.

Secondly, as opposed to the usual “Lax pair” formulation of integrable systems, we are
here forced to consider a “Laxp-tuple” of operators, i.e. the vector fieldsvA, which must
define an integrable distribution for the complex structure on the manifoldZ to be integrable.

Finally, as in the simpler case of anti-self-dual conformal structures in dimension 4
(and similarly three-dimensional Einstein–Weyl structures), the differential operators we
consider generally contain derivatives in the spectral projective space, corresponding to the
fact that the complex manifoldZ generally does not fibre over the complex projective space
Pq−1.

The only case in which we recover a standard Lax pair construction with spectral param-
eter inP1 is the case(p, q) = (2,2), when the twistor space fibres overP1. Geometrically,
this corresponds to the description of (complexified) hyper-complex structures in four di-
mensions.

The second observation above is consistent with the complex-manifold approach to
hyper-complex and quaternionic-Kähler manifolds of real dimension 4k, where the points of
the manifold correspond to rational curves(q = 2)with normal bundle⊕2k

1 H in a complex
manifoldZ of dimension 2k + 1. One could further generalise this picture by considering
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more general embedded complex sub-manifolds thanPq−1, with more complicated normal
bundles (see, for example [10]). The geometrical structures induced on the space of such
sub-manifolds is, however, rather unclear, and does not appear to have any straightforward
interpretation in terms of integrable systems. Even if we restrict ourselves to embedded
rational curves, Grothendieck’s theorem implies that the most general normal bundle is of
the formN ∼= ⊕n

i=1H
mi for integersmi , but the geometrical interpretation of the induced

structure on the space of rational curves for generalmi is far from apparent.
Finally, we should note that we have considered only complex Grassmann structures. If we

consider an analytic real Grassmann manifold, where the complexified tangent bundle splits
as a tensor product, then we may complexify the manifold and use the complex construction
of the twistor space given above. However, there does not seem to be any straightforward
definition of the twistor space in the case of non-analytic real Grassmann manifolds. The
hope would be that analyticity follows from existence of a right-flat Grassmann structure, in
the same way that in four dimensions the existence of an anti-self-dual conformal structure
implies the existence of a real analytic structure [1]. From the twistorial point of view,
we require that the complex manifoldZ admit a real structure (i.e. an anti-holomorphic
involution),σ , and that there be an-parameter family of real embeddedPq−1’s which are
invariant under this map. These invariantPq−1’s then correspond to points of the manifold
M. Since the manifoldM is then a real sub-manifold of a complex-analytic manifold, it
then necessarily admits a real-analytic structure. The existence (or not) of fixed points ofσ

then allows us to attribute a signature to the induced Grassmann structure onM, with the
fixed point set generically defining a real projective space, which determines the set of null
planes at a given point inM. A real structure onZ with no fixed points would define the
analogue of a Riemannian structure of Theorem 1.1.
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