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Abstract

We consider some natural connections which arise between righipflgt paraconformal struc-
tures and integrable systems. We find that such systems may be formulated in Lax form with
a “Lax p-tuple” of linear differential operators, depending a spectral parameter which lives in
(¢ — D)-dimensional complex projective space. Generally, the differential operators contain partial
derivatives with respect to the spectral parameter. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 32L.25; 35A22; 53C28

Subj. Class.: Differential geometry

Keywords: Grassmann structure; Integrable systems; Twistor space; Lax form

1. Introduction

It has long been known that in four-dimensional Riemannian geometry there is a connec-
tion between conformal structures with anti-self-dual Weyl tensor, and three-dimensional
complex manifolds:

Theorem 1.1 (Atiyah, Hitchin and Singer [1]).1f amanifold M admitsa conformal structure
with W+ = 0, then the projective spin-bundle P(V) is a complex 3-manifold. Conversely,
given a complex 3-manifold Z with a real structure (i.e. anti-holomorphic involution) o
and a 4 parameter family of embedded rational curveswith normal bundle N = H & H,
on which o acts as the anti-podal map, then the space of real rational curves admits an
anti-self-dual conformal structure. All anti-self-dual conformal structuresarisein thisway.

Moreover, if one considers anti-self-dual Yang—Mills fields on an anti-self-dual back-
ground, then solutions may be constructed in terms of holomorphic vector bundles on this
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complex 3-manifold. The existence of such a complex 3-manifold is looked on as being
central to the notion of integrability of the anti-self-duality equations [9,16,17].

If one tries to generalise notions of anti-self-duality to higher dimensional Riemannian
manifolds, there are several (inequivalent) paths one may choose to follow.

A common choice is to investigate Riemannian manifolds in higher dimension with re-
duced holonomy group [15], and gauge fields related to these structures [4]. In the case of
(irreducible, non-symmetric) Riemannian manifolds, one may then invoke Berger’s clas-
sification of the possible holonomy groups of the Levi—Civita connection. Apart from the
generic case of S@) holonomy group, the holonomy groups allowed by Berger's clas-
sification correspond to Kéahler, quaternionic-Kéhler, Ricci-flat Kahler and hyper-Kéhler
manifolds, along with two exceptional possibilities of Ricci-flat metrics with holonomy
groupG» and Spin in dimensions 7 and 8. This may not be the most natural approach if
ones interest is in integrable systems, however, since, of these possibilities, the only sys-
tems which appear to be integrable are those which govern Kéhler, quaternionic-Kéhler
and hyper-Kahler structures. The equations for Ricci-flat Kéhler metrics are not integrable
in dimensions greater than 4. Little is known concerning the integrability ofGthand
Spin; holonomy equations, although they contain as special cases the (non-integrable) equa-
tions for six-dimensional and eight-dimensional Ricci-flat Kahler structures, respectively.
Therefore, it is extremely unlikely that these two systems are integrable.

An alternative path is not to start with the geometrical condition of anti-self-duality of
the four-dimensional metric, but to simply consider systems in higher dimensions where
there is a suitable generalisation of the complex 3-manifold which appears in four dimen-
sions. Generically, we will denote such a complex manifoldZyand the idea is that
one reconstructs the geometrical manifold, dendtecdhs a parameter space of particular
sub-manifolds ofZ. Natural geometrical structures then arise on the maniébhs a result
of the integrability of the complex structure @h Any additional holomorphic structures
that exist onZ then lead to more specialised geometrical structuresfoihe complex
manifold Z will be referred to as a twistor space, and the essence of the work of Ward and
others [9,16,17] is that it is the existence of a twistor construction for a problem which
should be interpreted as a sign of its integrability. Substantial evidence for this claim comes
from the fact that many standard integrable systems in two and three dimensions may be
constructed as symmetry reductions of the equations for anti-self-dual Yang—Mills fields
and anti-self-dual conformal structures in four dimensions [9,17]. In this approach it is the
existence of the complex manifold that is central, the equations on the space—time then
being simply a manifestation of the complex structureZzon

We aim here to study (local) properties of structures for which there is a complex manifold
construction, the right-flat Grassmann structures, and to see what new features of integrable
systems these structures suggest. In particular, we begin by reviewing, in explicitly local
terms, the construction implicit in Theorem 1.1. What we find is that even in this simplest
situation, there are features of the equations which arise which are unusual from the point of
view of integrable systems. In the generic case of an anti-self-dual manifold, the spin-bundle
does not fibre ovelP;, the complex projective line. In integrable systems terms this means
that the operators in our Lax pair contain partial derivatives with respect to the spectral pa-
rameter. Therefore the spectral parameter itselfis very much part of the geometrical problem,
a property which is unusual (but not unknown) in conventional integrable systems theory.
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We then study, in a similar fashiamp, ¢) right-flat Grassmann structures in dimension
n = pg. In this case, we find that as opposed to a Lax pair of operators depending on a spec-
tral parametek e Pq, the right-flat condition on a Grassmann structure is determined by a
Lax p-tuple of differential operators depending on a spectral parameter taking values in the
higher-dimensional projective spag_;. As in the case of anti-self-dual structures in four
dimensions, these differential operators generally contain derivatives in the spectral param-
eter, corresponding to the fact that the complex manifbttbes not fibre holomorphically
overP,_;.

The moral of our story is that if one takes the ideas of Ward and others seriously that it is
the connection with complex manifold theory which is central to integrable system theory,
then one must substantially generalise what one considers to be an integrable system.

2. Anti-self-dual conformal structures

We begin by reviewing, in local terms, the construction implicitin Theorem 1.1. Consider
an oriented Riemannian four-manifald. We may then define a canonical almost complex
structure on the projective spin-bundle. First, we use the Levi—Civita connection to split the
tangent bundle oP(V™) as the direct sum of a vertical part along the fibregP(v+)),
and the horizontal partd (P(V1)), which is the pull-back of the tangent bundle A,
p*TM. The vertical fibres are complex projective lines, and so inherit a natural almost
complex structure. In the horizontal direction, a non-zero spinar(V*), identifies7, M
by Clifford multiplication with the two-dimensional complex vector spa¥e ), . At the
points ofP(V1) corresponding ter, we put this almost complex structure & (P(V1)).

It follows that this almost complex structure is integrable if and only if the Weyl tensor of
the conformal structure is anti-self-dual [1].

To cast this in more explicit terms, fix a Riemannian metsjin the conformal structure.

If we complexify the tangent space, and extend the metric by complex linearity to a complex
metric (again denoteg) on TM ® C, then locally, we may introduce a null bagid|i =
1,...,4} for T*M ® C in which the metric may be written as

J=€'R+e€QRe+€QRe* + et Q€. (2.1)
We can then define the Levi—Civita connectibh of the tetrad by the equation

4
de"+ZFij/\ej=O, i=1,...,4
j=1

If we adopt an affine complex coordinate on the fibreP(V1)), = Py, then we define an
almost complex structure d(V ) by defining the distributiom c 7*(P(V*)) spanned
by the 1-forms

o1=€+1rel, or=€—re*,  o3=0dr+ Ta+ A2 — T3a) + 2213,

This almost complex structure dh(V+) is integrable if and only if the distribution is
involutive, i.e. A ¢ Al A A. It is straightforward to show that this is the case if and
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only if the Weyl tensor of the metrig defined above is anti-self-dual. It also follows
straightforwardly that this construction is unaffected by conformal changes of metric, and
so depends only on the conformal equivalence class of the metric [1].

The connection with integrable systems comes from taking a dual formulation of this
result [9]. The anti-holomorphic tangent spacé?¢¥ ) is spanned by the vector fields

vy = Y [e4+A4%+A4%+A<@+Az%+éz%ﬂ,
Vo = ! = [el-l-Ali-l-Ali—)»<93+A31+A31>],
1+ ar EN A BN B
Vg_i,
BN

wheree; are vector fields o/ dual to the 1-forms’
(€, e) =5,
and
A = —Tig— Ao — I34) — 2213, A = —TIg+ A2 — I34) — 1214,

The complex structure defined by these vectors is integrable if they are closed under Lie
brackets. We now note that the complex structure defined by these vector fields is the same
as defined by the following basis:

d
Ll=D4~|—)\D2, L2=D1—A_D3’ V:a_x’
where we have defined the vector fields
0
Di=¢e+ A —. (2.2)

oA

The only non-trivial part of the integrability of the complex structure we have defined is
that the Lie bracket of ; andL» must lie in7 (1. Therefore for integrability we require
the existence of functions(x : 1), B(x : A) with the property that

[D4+ AD2, D1 — AD3] = a(Dg + AD2) + B(D1 — AD3). (2.3)

A power counting argument implies that the functienand 8 are quadratic polynomials

in the variablex. If this condition is satisfied, then the projective spin-bundle is a complex
3-manifold, and so the conformal structure must be anti-self-dual. Conversely, if the con-
formal structure is anti-self-dual, then the projective spin-bundle is a complex 3-manifold
and so, locally, we may choose bases where the above equations are satisfied. We therefore
have the following theorem.

Theorem 2.1. Given an anti-self-dual conformal structure and any representative metric
in the conformal class written in the form (2.1), then there exists a 1-form A, which is a
guadratic function of an arbitrary P;-valued parameter A and two quadratic functions of
A, o« and B which obey Eq. (2.3), where the differential operators D; areasin Eq. (2.2).
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Itis possible to decompose Eg. (2.3) into components in the tangent space of the manifold
M and components in the vertical directi@por. The components iiiM tell us that the
functionsa, 8 and the components of the forf correspond to parts of the Levi—Civita
connection. The parts of the Levi—Civita connection they define are precisely the parts
required to construct the self-dual part of the Weyl tens#¥, The vertical component of
Eqg. (2.3) then tell us that the five individual components & vanish identically, so the
Weyl tensor is anti-self-dual.

Eq. (2.3) tells us that the operatdrs andL » constitute a Lax pair for the problem, and
therefore that the system is integrable. However, these operators contain derivatives with
respect to the spectral parametea feature which does not usually occur in standard inte-
grable systems theory. The origin of these derivative terms lies in the nature of the complex
manifoldP(VT). Eq. (2.3) are the integrability condition which ensures the existence of three
linearly independent solutions of the over-determined set of equations for afuyi¢tion.)

Lif =Laf =0.

Solutions of these equations correspond to meromorphic functio®(8m). The fact
that A itself is not a solution of these equation is a consequence of the fact that generally
P(V™) does not fibre oveP; (equivalentlyi is not a meromorphic function oR(V™)).
In the case of hyper-Kahler or hyper-complex structures, where the spin-bundle does fibre
over P, the 1 derivatives are not present in the Lax pair [5,8]. In these cases, one can
reconstruct the transition functions of the bundle from the solutions of the above equations
[11].

Although, Eq. (2.3) describes the most general anti-self-dual conformal structures locally,
there are various special cases of these equations:

e Letting A; = A¢;, we recover the class of Hermitian anti-self-dual spaces, which are
conformal to scalar-flad-Kahler metrics [14].

e LettingAs+ 1Az = A1 — AA3 = 0 defines hyper-complex structures in four dimensions
[5].

e Letting A; = A¢;, and assuming the vector fieldsare divergence free with respect to
some volume element defines a scalar-flat Kahler metric up to a known conformal factor
(this is an extension of a result of Park [13]).

e Letting A4 + AA2 = A7 — AA3 = 0 and assuming the vector fieldsare divergence
free with respect to some volume element defines a hyper-Kéhler metric up to a known
conformal factor [8].

Similar results hold for complex anti-self-dual conformal structures and real conformal
structures of signatune-, —, +, +) with suitable generalisations and modifications of the
reality conditions.

3. Grassmann structures

Anti-self-dual conformal structures in four dimensions are a special case of a more
general type of structure, a right-flat Grassmann structure. Recall that for infegers 2,
a(p, g) Grassmann structure (or paraconformal structure in the terminology of Bailey and
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Eastwood [2]) consists of a complex manifall of complex dimensiom = pg and an
isomorphismx between the (holomorphic) tangent bundleMdfand the tensor product of
a rankp complex vector bundl& with a rankg vector bundleV

a:TM=>UQ®YV. (3.2)
Given such an isomorphism, we may introduce an isomorphism
APU = AV (3.2

between the highest exterior powers of these bundles.

Given connections, both denot& on the bundleg/ andV, we may define a unique
induced connection ofiM, again denote®, by demanding that covariant differentiation
commutes with the isomorphism This affine connection naturally has torsidrdefined

by

VxY — VWX —[X, Y] =T(X,Y) V¥X,Y e I'(TM),
and curvature tensd given by

([Vx, Vy] = Vix,ypV = R(X, Y)V  VX,Y,V € I'(TM).

A scale for a Grassmann structure consists of a non-vanishing seetiar,the bundle
APU. The isomorphism (3.2) then implies the existence of a non-vanishing sectiof,
the bundleA?V. It can be shown [2] that given the sectionande€’, there exist unique
connections oy andV (and therefore ofiM) with the property thatthe torsionis trace-free,
and which annihilate the formsande’:

Ve = Ve =0.

We shall generally assume the existence of a scale, and work with the unique connections
which preserve it.

3.1. Algebraic decomposition of the torsion and curvature

If we consider the space of 2-forms o, we have
NA(T*M) = AU @ V) = (AP(U¥) ® SA(V) @ (S2(U*) @ AX(V¥)),

where A and S denote skew-symmetric and symmetric powers of the relevant bundles,
respectively. Viewing the torsion asTM valued 2-form onM, it decomposes into two
parts

T=TtaT",
where
Tt e TM® (A2(U*) ® S2(V*)), T- e TM® (S2(U*) @ A2(V*)).

One can show that the trace-free parts of these parts of the torsion are independent of the
connection chosen on the vector bundleandV [2].
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There is a similar decomposition of the curvature terRolGiven the direct product
nature ofTM, the curvature decomposes as a direct sum

R=R ®Ildy +1dy @ RT,

whereR™ andR™ denote the curvatures of the connectidhsn U andV, respectively.
R* may be viewed as a section af(M) ® End(V), and

A2(M) @ End(V) = ((A2U* @ S?V*) @ (S2U* @ A°V*) @ (V @ V¥)
= (AU @ (VR VF @ S2VH)) @ (S2U* @ (V @ V¥ ® A%VH)).

We now wish to consider the componentRif which is a section of\?U* ® (V @ V* ®
$2V*). If we completely symmetrise in thEé components, then the trace-free part of the
remaining object will be referred to as the positive part of the Weyl tensor:

W™ e I'(trace-free part of A°U* ® (V* @ S3V*)).

Definition 3.1. A (p, g) Grassmann structure is right-flat if
Tt =0, p > 2, wt =0, p=2

In the casep > 2, the vanishing of the torsion implies automatically thiat = 0,
whereas ifp = 2, the torsionT ™ automatically vanishes, so the condititiit = 0 is
non-trivial [2]. A complex four-dimensional spin-manifold with a metric is a particular case
of a Grassmann manifold with = g = 2 since, due to the structure of the complexified
rotation group, the complexified tangent bundle decomposes as a product of spin-bundles. In
this caseW* may be identified with the self-dual part of the Weyl tensor of the conformal
structure [1]. In higher dimensions, with = 2k andg = 2, special cases of right-flat
Grassmann structures include quaternion-Kahler and hyper-Kahler structures.

3.2. Twistor spaces

In the case of right-flat Grassmann structures, there is an associated complex manifold
Z of dimension(p + 1)(¢ — 1) which defines the structure. This manifold is constructed
as follows.

Consider & p, ¢g) Grassmann structure on a complex maniftéddas above, and assume

we have alocal basig“|a = 1, ..., n} for T*M. The isomorphism (3.1) implies we may
write this as{e™|A = 1,...,p, A’ = 1,...,4q}. Given anyr, € V., we define the
annihilator

= ¢y € VI {gx, mx) = 0} C V7.

Let A C £22(V) be the distribution on the total space of the bundlgenerated by the
1-forms

ot =™, eI (@b, (3.3)

o = dn? + )/A/B/rrBl, (3.4)
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wherey?' 5 denote the components of the connectionarComplex conjugation gives
the complex conjugate distributiofi. The sub-bundle of (V) annihilated byA and A is
spanned by the distributiosandT, whereT C T (V) is spanned by the vector fields

Vg = nAIDAA/, A:l,... , P (35)

The distributionA is closed (t ¢ A A A) if and only if the distributionT is closed
under Lie bracketsT, T] c T. It is straightforward to show from Eq. (3.5) that given
M, x € '(U)

;9
Vigns Vyarl = —-TA® 7, x @ 7) + (RA Q@ 7, x @ m)m)A vy (modT).

yu
(3.6)

Therefore, if we wish the spadto be closed under Lie bracket, we require
@, TA®m x®m) =0 Ve l'(nt) Vi, x € I'(U), (3.7)
RAQm, x®m)r =0 VA, x € '(U). (3.8)

It is straightforward to show that if we fix the connectiovi®n U andV so as to preserve
the scale, as mentioned in Section 3, then Eq. (3.8) implies that the Grassmann structure is
right-flat. Therefore, the distributidh is integrable (equivalently is closed under exterior
differentiation) if and only if the Grassmann structure is right-flat.

We wish to consider the projective version of this construction. Treating the section
as homogeneous coordinates on the projective space = P(V)f for eachp € M, we

may introduce complex coordinates on the redian= {r € C?|n~ # 0}
. ni
M=—, i=2,...,q.
! 4
The projections of the 1-forms above are
oA =M L A2eA2 M A= , D, (3.9
oli=di —Al, i=2...,q, (3.10)

whereA is the projective version of the connection. We again denote the distributRyiin
defined by these 1-forms hy. Similarly, a distribution, again denotdd c T (P(V)), is
spanned by the projection of the vector fields (3.5)

VAZ:D1+)L2D2+"'+)Lqus A=1...,p. (311)

The distribution spanned by these vector fields is integrable if and only if the Grassmann
structure onM is right-flat. The integrability of this distribution implies we have a set of
integrable p-dimensional planes iR(V). Quotienting outP(V ™) by this distributiont
therefore defines a quotient manifdtdof dimension(p + 1)(¢ — 1), which we denote by

1 We are assuming that there is nothing globally pathological about the fibration, and that such a quotient operation
is justified.
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Z.We therefore have a map: Z — M, where the image of a point ifiis a p-dimensional
plane inP(V) (in twistorial terminology, arx-plane). We can then define the distribution
p*A C A(Z),whichisinvolutive orZ. Since the dimension ¢f* A equals the dimension of
Z, this distribution therefore determines an almost-complex structure bforeover, since
p* A is involutive, this almost-complex structure is integrable. Therefbie a complex
manifold of dimensior(p + 1)(¢ — 1).

We now wish to invert this process and construct the manifolidlom a generic complex
manifoldZ. Given a poinp € M, itsimage in the manifold constructed above is a copy of
P,_1 C Z, corresponding to the fibi(V) ,. We therefore wish to reconstruct the manifold
M as the parameter space of embedfgd;’'s in Z. In order to carry out this construction,
we need to determine the normal bundig,of such an embedded sub-manifold.

Inthe notation of Eq. (3.4), the co-normal bundi&,, is spanned by the forrr{@AeAA/ |p €
7t cV* A=1, ..., p}. The co-normal bundle is therefore isomorphigtoopies of the
bundler ¢ V*, which annihilates the elemente V. Givenx € P,_1, m, is an element
of the complex line inC? corresponding to the point, i.e. an element of thé,, whereL
denotes the tautological bundie:= H~1. We define the Universal Quotient bundi@,
so that the short sequence of vector bundles

0O—-L—->C1—-Q0—0

is exact, whereC? denotes the trivial ranly vector bundle ove®,_;. The bundler+
is therefore isomorphic t@*, the dual of the quotient bundle. From the fact tidat=
H ® TP,_1 [6], we deduce that

N* = &), (3.12)
1

where for a general manifold, 2" denotes the bundle efforms onX, and in the particular
case ofX = P,_1, we define

Q7 (k) = 27 (P,) ® H.

The dual of Eq. (3.12) provides the normal bundlePpf, C Z

N=@HHRT(P, ). (3.13)

P~

The Grassmann manifolf is reconstructed as the set of embedégd;’s in Z. Given
that we know the form of the normal bundle of an embed#gd; corresponding to a
pointx € M, the number of deformations of the projective space follows from Kodaira’'s
theorem: ile(P,,_l, N) = 0, then the space of embeddggl ;s is a complex analytic
manifold M, and the tangent spacé&, M, is isomorphic toHO(Pq_l, N). To calculate
these cohomology groups, we need some results concerning vector bundles over complex
projective spaces [12]. Serre duality states that for a holomorphic vector bEraiter a
(projective algebraic) complexmanifold X, we have the isomorphism

HY(X,E) = (H" (X, Kx ® E"))",
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whereK x denotes the canonical bundleXf On such a manifold we also have the identi-
fication

=N e
For a complex projective space

Kp, = H_("+l),
so in this case, we have

HY(P,, 27 (k)) = (H" 1(P,, 2" P(—k))*. (3.14)
Results of Bott [3] then tell us that

dime HY(P,, 27 (k)

k — k—1
<n+ p)( ) g=0, 0<p<n, k>p,
k p

—k k-1

( +p>( ) gq=n, 0<p<n, k<p—n,
—k n—p

0, otherwise

Applying these results, we firstshowtlfai(Pq_l, N) = 0.FromEgs. (3.12) and (3.14),
we find that

p
HY(P,;_1, N) = (HI"2(P;_1, K @ N¥)* = (HI"2(P,_1, H 1 ® ?9%1»)*

P 4
= ?<H‘I—Z<Pq_1, 21— g)* = §H1(Pq_1, 297%(g - 1) =0,

where the last equality follows from Eq. (3.15). TherefdfeM is isomorphic to
HO(P,_1, N), where

p
HO(P,_1, N) = ?HO(qul, Q172(q — 1)) = CM,

by a similar argument to that given above. Therefore, given an embe&jdedn a complex
manifold Z of complex dimensiolp + 1)(¢ — 1) with normal bundle as in Eq. (3.13), there
will exist ann = pq parameter family of such spaces. In the usual fashion, the integrability
of the complex structure oA then implies thai carries a right-flat Grassmann structure.

4. Integrable systemsinterpretation

The integrability of the distributiof” defined by the vector fields (3.11) implies the
existence of function€ag® with the property that

P
[Va.vel = > Casve. A B=1....p, (4.1)
Cc=1
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where, we recall, the vector fields are defined by
Va = D1+ 22Dy +---+ 29D,
with

d

D,'=€‘,'—A,'jm

with the A,/ quadratic polynomials in the spectral parametéras such, the vector fields
V4 are sections of the tangent bundlerafV ), and correspond to differential operators which
depend on a set 6§ —1) spectral paramete(s?, . .. , A?). More properly, these parameters
correspond to a section of the line bundfeover P,_1, so our “spectral parameter” now
lives in P,_1, unlike the usual case where we have a single spectral paramekgr A
power counting argument implies that the functichg® are quadratic polynomials in the
complex coordinates’, corresponding to sections of the bundié.

As in the description of anti-self-dual conformal structures in four dimensions, the dif-
ferential operators4 contain partial derivatives with respect to these spectral parameters,
corresponding to the fact that the complex manifdldienerally does not fibre holomor-
phically overpP,_;.

The integrability of the distributio” is equivalent to the fact that the distributionis
involutive. Integrability of 7 implies the integrability of a distribution gh-dimensional
planes inP(V), and the existence @p + 1)(¢ — 1) functions f* such that the planes are
level sets of these functions. Equivalently, the distributibis spanned by the differentials
{df*}. If we then quotient out by thg-dimensional distribution to construct the manifold
Z, then the functiong® descend to holomorphic functions on the manifgldand{d f*}
generateA 10 (7).

In terms of the Grassmann manifal, the%p(p —1) equations (4.1) are the integrability
condition for over-determined set of equations for a functf@nm : 1):

Vaf =0, A=1...,p. (4.2)

When Eg. (4.1) are satisfied, there eXigt+ 1)(¢ — 1) linearly independent solutions of
these equationfsf, }. The sub-spacgf, = constant C P(V) are then thex planes of our
right-flat Grassmann structure. The functidifg} then descend to holomorphic functions
on the quotient manifol&.

In integrable systems terminology, Eq. (4.2) is the associated linear problem for the
right-flat Grassmann structure. The compatibility condition Eq. (4.1) then ensures the in-
tegrability of the system. There are several non-standard elements of this construction,
however. Firstly, the analogue of the spectral parameter of standard integrable systems
theory in these equations is the set of affine coordingitgson the(¢ — 1)-dimensional
complex projective spack,;_1.

Secondly, as opposed to the usual “Lax pair” formulation of integrable systems, we are
here forced to consider a “Lgx-tuple” of operators, i.e. the vector fielglg, which must
define an integrable distribution for the complex structure on the mariftdde integrable.

As in the simpler case of anti-self-dual conformal structures in dimension 4 (and sim-
ilarly three-dimensional Einstein—Weyl structures), the differential operators we consider
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generally contain derivatives in the spectral projective space, corresponding to the fact that
the complex manifold generally does not fibre over the complex projective spca.

4.1. Relationswith Ward's systems

Eq. (4.1) are, in some sense, an analogue of a construction due to Ward [16] for gauge
fields. Ward considered princip&kbundles with a connectioh e I'(A1®g). We consider
a fieldy in a representation af, and consider the over-determined set of linear equations

Dva‘(ﬁ‘zo, O{:l,...,p, (43)

where D) denotes the covariant derivative of the figidvith respect to the connectiak,

and theV, are vector fields. Moreover, the vector fielg are taken to depend on a set

of complex parameterf.4|A = 1, ..., ¢}, being a homogeneous polynomial of degree

N in these parameters. (The vector fields may therefore be identified with a section of
TM ® H", whereH denotes the Hopf bundle over the complex projective spce.)

For fixedA4, Eq. (4.3) are actually dim g differential equations for dirg unknowns, and

so are over-determined if > 1. Since the system is over-determined, the existence of a
maximal family of solutions places a set of algebraic constraints on the cunfatfréne
connection

F(Vo,Vp) =0, «,f=1,...,p. (4.4)

In the cases where the set of polynomial vector fiéldsare suitably non-degenerate,
Eqg. (4.4) can be completely solved by twistorial techniques [16].

The connection with Grassmann structures arises if we consider the case of linear poly-
nomials corresponding t%y = 1. In this case, the non-degeneracy condition mentioned
above is analogous to the defining isomorphism (3.1). If we assume the underlying mani-
fold of the theory iSRPY with coordinate§x : a = 1, ... , pq}, and that the connection is
constant (i.e. independent of thé), then the integrability conditions above become a set
of algebraic equations on the connection

[AVe),AV)] =0, o, B=1...,p.

If we now take the connectiohto have values in the tangent bundle of an auxiliary manifold
M, then we may write

n 4
ANVa) =D od,0 e, (4.5)
a=1A=1
where{e,|a = 1, ..., n} denotes a basis of vector fields on the manifddThe integra-

bility conditions (4.4) then reduce to a set of relations on the commutators of the vector
fields{e,} on M

q

n
>0 Y aaBol,ohslen @] =0, (4.6)
A,B=0a,b=1
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where [ ] denotes the Lie bracket of vector fields. Imposing Eq. (4.6) for all values of the
parameters.4, we recover Eq. (4.1) witiag® = 0 in the case when the derivatives with
respect to the spectral parameter are not present.

If we allow derivatives with respect to the spectral parameter, then, in the terminology
of Park [13], our equations for general right-flat Grassmann structures may therefore be
considered as &;_1-extension of Ward’s equations for a constant connection on flat space
with values in the tangent bundle of an auxiliamynanifold M.

A special case of these equations without derivatives with respect to the spectral param-
eters is Joyce’s interpretation of the equations for hyper-complex conformal structures in
four dimensions [7], which in turn is a generalisation of the description of anti-self-dual
Ricci-flat structures due to Mason and Newman [8].

In terms of Ward'’s classification of systems in dimensions up to 11, Grassmann structures
of type p = k, g = 2 correspond to Ward’s systemds, p = 2,¢g = m + 1 correspond
to hisC,,, andp = ¢ = 3 correspond to his system. The geometrical analogue of
Ward’s systems with higher order homogeneous polynomials correspond to twistor spaces
Z containing embeddef, _1’s with more complicated normal bundle, sections of which
can be identified with a collection of sections of the bunffe Unfortunately, there does
not seem to be any simple geometrical interpretation of these systems in general.

5. Remarksand conclusions

If we wish to take seriously the idea that at the heart of classical integrable systems
is a connection with complex geometry, then implicit in the formulation of Grassmann
structures given in Eq. (4.1) are several generalisations of standard notions of integrability.

Firstly, the analogue of the spectral parameter of standard integrable systems theory in
these equations is the set of affine coordingtés on the(q — 1)-dimensional complex
projective spaceP,_1. In other words, the spectral parameter lives in a general complex
projective space.

Secondly, as opposed to the usual “Lax pair” formulation of integrable systems, we are
here forced to consider a “Lgx-tuple” of operators, i.e. the vector fielglg, which must
define an integrable distribution for the complex structure on the mariiftdde integrable.

Finally, as in the simpler case of anti-self-dual conformal structures in dimension 4
(and similarly three-dimensional Einstein—Weyl structures), the differential operators we
consider generally contain derivatives in the spectral projective space, corresponding to the
fact that the complex manifold generally does not fibre over the complex projective space
P,_1.

the only case in which we recover a standard Lax pair construction with spectral param-
eter inPy is the casép, q) = (2, 2), when the twistor space fibres ovRy. Geometrically,
this corresponds to the description of (complexified) hyper-complex structures in four di-
mensions.

The second observation above is consistent with the complex-manifold approach to
hyper-complex and quaternionic-K&hler manifolds of real dimensipwHere the points of
the manifold correspond to rational curv@s= 2) with normal bundl@%"H in a complex
manifold Z of dimension 2 4 1. One could further generalise this picture by considering
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more general embedded complex sub-manifolds #ian, with more complicated normal
bundles (see, for example [10]). The geometrical structures induced on the space of such
sub-manifolds is, however, rather unclear, and does not appear to have any straightforward
interpretation in terms of integrable systems. Even if we restrict ourselves to embedded
rational curves, Grothendieck’s theorem implies that the most general normal bundle is of
the formN = @}_,; H™ for integersn;, but the geometrical interpretation of the induced
structure on the space of rational curves for genegab far from apparent.

Finally, we should note that we have considered only complex Grassmann structures. If we
consider an analytic real Grassmann manifold, where the complexified tangent bundle splits
as a tensor product, then we may complexify the manifold and use the complex construction
of the twistor space given above. However, there does not seem to be any straightforward
definition of the twistor space in the case of non-analytic real Grassmann manifolds. The
hope would be that analyticity follows from existence of a right-flat Grassmann structure, in
the same way that in four dimensions the existence of an anti-self-dual conformal structure
implies the existence of a real analytic structure [1]. From the twistorial point of view,
we require that the complex manifold admit a real structure (i.e. an anti-holomorphic
involution), o, and that there be&parameter family of real embeddé®yj_;’s which are
invariant under this map. These invaridit_;’s then correspond to points of the manifold
M. Since the manifoldV is then a real sub-manifold of a complex-analytic manifold, it
then necessarily admits a real-analytic structure. The existence (or not) of fixed paints of
then allows us to attribute a signature to the induced Grassmann structifewith the
fixed point set generically defining a real projective space, which determines the set of null
planes at a given point iff. A real structure orZ with no fixed points would define the
analogue of a Riemannian structure of Theorem 1.1.
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